Affiliation:
1. San Diego State U.
2. Georgia Inst. of Technology
Abstract
Summary
Fluid-flow-driven particle migration through porous networks reflects the interplay between various particle-level forces, the relative size between migrating particles and pore constrictions, and the spatial variability of the velocity field. Experimental evidence shows that particle migration in radial fluid flow results in self-stabilizing annular clogging patterns when the particle size approaches the constriction size. Conversely, flow localization and flushing instability are observed when the particle size is significantly smaller than the pore-throat size.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
103 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献