The Principle and Application of a Novel Rotary Percussion Drilling Tool Drived by Positive Displacement Motor

Author:

Xuan Lingchao1,Guan Zhichuan1,Hu Huaigang1,Li Jingjiao1,Zhang Bo1

Affiliation:

1. School of Petroleum Engineering in China University of Petroleum

Abstract

Abstract Experience over the past decades has proved that rotary percussion drilling technology is one of the most effective ways in improving the rate of penetration in deep wells. In the rock breaking process, the drill bit's teeth are forced into the rock powered by the bit weight and impact load, then the contact surfaces of rock and PDC teeth are destructed gradually. The finite element software was used to simulate the process of one PDC tooth breaking up the sandstone with the rotary percussion technology. The force on one PDC tooth in rotary percussion drilling was constantly fluctuating, and the impact load added the instability of load curve. The maximum mechanical strain appeared at the fracture surface, but not the contact surface of the rock with the PDC tooth. When the rock broken reached a steady state, the ratio of eroding energy to total energy consumption stabilized at around 52%. The research showed that rotary percussion drilling technology is still not mature in the aspects of high-efficiency, long-life, and low-cost. The improvement of the comprehensive performance of the percussion tools needs more intensive study. This paper's objective is to design a novel rotary percussion tool to generate impact load. This new tool uses a positive displacement motor that drives the hammer piston to rotate, meanwhile the piston hits the anvil to generate impulse pulse. Also this tool's impact properties were tested and analyzed through field experiments. The impact frequency of this novel tool is 25.7~37.2Hz, which is adjusted by the flow rate of drilling fluid. The peak value of impact load is 20~42kN, adjusted by spring's compression. Drilling tests in laboratory experiments showed that the rotary percussion drilling can significantly increase the rate of rock broken, and the highest rate of speed-up compared with the common drilling is 64.2%. Increasing spring compression can improve the rate of penetration in these percussion drilling experiments. A good performance in drilling sandstone experiments in lab experiments proves that this novel tool is helpful in improving the ROP in drilling deep wells onshore and offshore.

Publisher

SPE

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3