Visualization of Fluid Flow Through Cracks and Microannuli in Cement Sheaths

Author:

Skorpa Ragnhild1,Vrålstad Torbjørn1

Affiliation:

1. SINTEF

Abstract

Summary Cement-sheath integrity is important for maintaining zonal isolation in the well. The annular-cement sheath is considered to be one of the most-important well-barrier elements, both during production and after well abandonment. It is well-known, however, that cement sheaths degrade over time (e.g., from repeated temperature and pressure variations during production), but the link between leak rate and the cause of cement-sheath degradation has not yet been established. In this paper, we have studied fluid flow through degraded cement sheaths. The degree of degradation of the cement sheaths varied from systematically connected cracks to real microannuli. The leak paths, created by thermal-cycling experiments, were imported into a computational-fluid-dynamics (CFD) simulation software. The pressure drop over the cement sheath was used as a boundary condition, and the resulting pressure-driven flow was studied using methane gas as the model fluid. The Forchheimer equation was used to estimate the effective permeability of the cement sheaths with defects. Our results show that the pressure-driven flow is complex and greatly affected by the geometry of the flow paths. A nonlinear pressure-buildup curve was observed for all experimental cases, indicating that Darcy's law was not validated. For homogeneous microannuli, the pressure-buildup curve was linear. The estimated effective permeability for all cases was observed to be orders of magnitude larger than that of a good cement sheath.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3