Study of Surface Complexation Modeling on Low Salinity Polymer Flooding in High-Temperature High-Salinity Carbonate Reservoirs

Author:

Hassan Anas M.1,Sebastian Anoo1,Al-Shalabi Emad W.2,Kamal Muhammad S.3,Patil Shirish3

Affiliation:

1. Chemical and Petroleum Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, UAE

2. Chemical and Petroleum Engineering Department, Research and Innovation Center on CO2 and Hydrogen, RICH, Khalifa University of Science and Technology, Abu Dhabi, UAE

3. College of Petroleum Engineering and Geosciences, King Fahad University of Petroleum and Minerals, Dhahran, KSA

Abstract

Abstract The low salinity polymer (LSP) injection is a hybrid enhanced oil recovery (EOR) technique, which synergistically enhances the displacement and sweep efficiencies through compounding the advantages of low-salinity water (LSW) and polymer floodings (PF). While an appropriate LSP-flooding field-scale design typically requires a predictive mechanistic model for capturing the polymer-brine-rock (PBR) interactions, few studies have focused on this issue till date. Therefore, the present study investigates the impact of water chemistry on polymer behavior in porous media using a surface complexation model (SCM), with the purpose of refining our understanding of the PBR-system. In particular, this work examines the effect of salinity and hardness on polymer viscosity and adsorption in dolomite formations during LSP-injection with the use of our in-house developed coupled MRST-IPHREEQC simulator. Hence, to comprehensively capture the geochemistry of the LSP process, the coupled MRST-IPHREEQC simulator included the chemical reactions, such as aqueous, mineral dissolution and/or precipitation, along with the surface complexation reactions. The findings of this study showed polymer viscosity losses of 82% and 63% for the 10-times spiked salinity (6230 ppm) and 10-times spiked hardness (110 ppm) cases, respectively. Thus, the base case low-salinity (LS) brine of 623 ppm was more effective in reducing the risk of polymer viscosity loss for the dolomite model (i.e., viscosity loss of 55%). The polymer viscosity losses calculated for the various potential determining ions (PDIs) concentrations of 10-times spiked Mg2+ (40 ppm) and 2-times spiked SO42- (156 ppm) were 61%, and 46%, respectively. Moreover, investigating the impact of salinity on polymer adsorption revealed that dynamic polymer adsorption increased from 53 μg/g-rock to 68 mg/g-rock and 64 mg/g-rock, when the salinity and hardness were increased from the base case (623 ppm) to 10-times spiked salinity and 10-times spiked hardness cases, respectively. Furthermore, the analysis showed that the 10-times spiked magnesium case exhibited higher polymer adsorption (87 μg/g-rock) compared to the 2-times spiked sulfate case (64 mg/g-rock), which is related to the formation of Mg-polymer surface complexes as a result of surface complexation processes between polymer molecules and magnesium surface species at the surface of dolomite rock. Overall, the surface complexation model has demonstrated that during LSP-injection, the stability of the water-film is enhanced, suggesting a significant alteration in wettability towards a more water-wetting state. This wettability alteration plays a crucial role in increasing oil production. Consequently, our findings underscore the effectiveness of LSP-flooding in enhancing oil recovery processes by modifying the wettability of the reservoir rock surfaces, leading to a more efficient displacement of oil.

Publisher

SPE

Reference43 articles.

1. Development and Evaluation of Locally Made Polymer for Improved Oil Recovery;Adeniyi;Soc. Pet. Eng. - SPE Niger. Annu. Int. Conf. Exhib.,2021

2. Mechanistic modeling of hybrid low salinity polymer flooding: role of geochemistry;Al-Shalabi;Journal of Petroleum Science and Engineering,2022

3. Enhanced Oil Recovery: An Update Review;Alvarado;Energies,2010

4. Brady, P.V., Krumhansl, J.L., and Mariner, P.E., 2012. Surface complexation modeling for improved oil recovery. Paper-SPE-153744, SPE Improved Oil Recovery Conference, Tulsa, Oklahoma, USA.

5. Polymer flooding technology yesterday, today, and tomorrow;Chang;Journal of Petroleum Technology,1978

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3