CO2/Water Foams Stabilized with Cationic or Zwitterionic Surfactants at Temperatures up to 120 °C in High Salinity Brine

Author:

Da Chang1,Elhag Armo2,Jian Guoqing3,Zhang Leilei3,Alzobaidi Shehab1,Zhang Xuan4,Al Sumaiti Ali2,Biswal Sibani3,Hirasaki George3,Johnston Keith1

Affiliation:

1. The University of Texas at Austin

2. Khalifa University of Science and Technology

3. Rice University

4. China University of Petroleum

Abstract

Abstract Stabilization of CO2 in water (C/W) foams with surfactants at high temperatures and high salinities is challenging, due to limited solubility of surfactants in aqueous phase, foamability and thermal stability. The apparent viscosities of C/W foams has been raised to up to 35 cP with viscoelastic aqueous phases formed with a diamine surfactant, C16-18N(CH3)C3N(CH3)2 (Duomeen TTM), or a zwitterionic surfactant, cetyl betaine, at 120 °C in 22% total-dissolved-solids (TDS) brine. Duomeen TTM is switchable from the nonionic (unprotonated amine) state, where it is soluble in CO2, to the cationic (protonated amine) state in an aqueous phase under pH ~6. Therefore, it may be injected in either the aqueous phase or the CO2 phase. The formation of viscoelastic phases with both surfactants lowers the minimum pressure gradient (MPG), and strengthens the lamella against drainage and Ostwald ripening by making the external aqueous phase more viscous, leading to stable foam even at very high foam quality. Both surfactants were shown to have excellent thermal stability and to form unstable emulsions when mixed with oil (dodecane). The core flood results showed that strong foam could be easily generated with both surfactants at a superficial velocity of 4 ft/day. The oil/water (O/W) partition coefficient of Duomeen TTM was very sensitive to pH, while that of cetyl betaine was constant over a wide range of pH. The ability to stabilize C/W foams at high temperature and salinity conditions with a single thermally stable surfactant is of great benefit to a wide range of applications including EOR, CO2 sequestration and hydraulic fracturing.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3