Crushed-Rock Vs. Full-Diameter Core Samples for Water-Saturation Determination in a Tight-Gas Siltstone Play

Author:

Wood J. M.1

Affiliation:

1. Encana Corporation

Abstract

Summary The efficacy of crushed-rock samples vs. small plugs or full-diameter core samples for measurement of porosity, permeability, and fluid saturation is an important consideration in the evaluation of tight-gas reservoirs and shale-gas reservoirs. Crushed-rock core analysis methods originally developed for shale reservoirs are now, in some cases, being extended to low-quality tight-gas reservoirs. In this study, crushed-rock and full-diameter core measurements from two wells drilled with oil-based mud are compared to evaluate which of the two core-analysis methods is more reliable for water-saturation assessment of a major North American tight-gas siltstone play (Montney Formation, western Canada). Measurements from the studied full-diameter core samples have wide ranges of water saturation (10 to 45%) and bulk volume water (BVW) (0.5 to 2.6%). In contrast, measurements from crushed-rock samples have much narrower ranges of water saturation (10 to 20%) and BVW (0.2 to 0.7%). The lower values and limited range of water-content measurements from crushed-rock samples suggest a significant degree of artificial water loss during sample handling in the laboratory. This conclusion is supported by comparing core-measured BVW with deep-resistivity values from openhole well logs. Full-diameter BVW measurements correlate well with log resistivity, indicating they are generally representative of in-situ reservoir conditions. Crushed-rock BVW values, on the other hand, show no correlation with log resistivity. The results of this study suggest caution is warranted in the use of crushed-rock samples for water-saturation measurements of siltstones or silty shales. Failure to recognize artificial water loss from crushed-rock siltstone samples could lead to an erroneous interpretation of irreducible water saturation at in-situ reservoir conditions with potentially serious implications for resource evaluation and exploitation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3