Abstract
Summary
The efficacy of crushed-rock samples vs. small plugs or full-diameter core samples for measurement of porosity, permeability, and fluid saturation is an important consideration in the evaluation of tight-gas reservoirs and shale-gas reservoirs. Crushed-rock core analysis methods originally developed for shale reservoirs are now, in some cases, being extended to low-quality tight-gas reservoirs. In this study, crushed-rock and full-diameter core measurements from two wells drilled with oil-based mud are compared to evaluate which of the two core-analysis methods is more reliable for water-saturation assessment of a major North American tight-gas siltstone play (Montney Formation, western Canada). Measurements from the studied full-diameter core samples have wide ranges of water saturation (10 to 45%) and bulk volume water (BVW) (0.5 to 2.6%). In contrast, measurements from crushed-rock samples have much narrower ranges of water saturation (10 to 20%) and BVW (0.2 to 0.7%). The lower values and limited range of water-content measurements from crushed-rock samples suggest a significant degree of artificial water loss during sample handling in the laboratory. This conclusion is supported by comparing core-measured BVW with deep-resistivity values from openhole well logs. Full-diameter BVW measurements correlate well with log resistivity, indicating they are generally representative of in-situ reservoir conditions. Crushed-rock BVW values, on the other hand, show no correlation with log resistivity. The results of this study suggest caution is warranted in the use of crushed-rock samples for water-saturation measurements of siltstones or silty shales. Failure to recognize artificial water loss from crushed-rock siltstone samples could lead to an erroneous interpretation of irreducible water saturation at in-situ reservoir conditions with potentially serious implications for resource evaluation and exploitation.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geology,Energy Engineering and Power Technology,Fuel Technology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献