Abstract
Abstract
Accurate predictions of connectivity and heterogeneity pose important technical challenges for successful maturation of conventional and unconventional reservoirs. We present the success of a new reservoir management workflow that uses both artificial intelligence and classic models to define the impact of stratigraphic connectivity and heterogeneity on horizontal-well production performance in a mature heavy oil field. The data-driven model based on fuzzy logic was used to compute a new attribute named dynamic Reservoir Quality Index (dRQI). The classical models used the stratigraphic Lorenz Plots, Reservoir Quality Index (RQI) and Flow-Zone indicator (FZI). Workflows were validated through a lookback process on more than 400 wells used to predict the fine-scale stratigraphic and directional heterogeneities within intervals targeted by horizontal wells, and production performance. The workflow was successfully used to optimize the horizontal well placement for 2019-2020 drilling programs.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献