A New Practical Method for Predicting Equivalent Drainage Area of Well in Tight Gas Reservoirs

Author:

Al-Fatlawi Omar1,Hossain Md Mofazzal1,Saeedi Ali1

Affiliation:

1. Curtin University

Abstract

Abstract The tight gas is one of the main types of the unconventional gas. Typically the tight gas reservoirs consist of highly heterogeneous low permeability reservoir. The economic evaluation for the production from tight gas production is very challenging task because of prevailing uncertainties associated with key reservoir properties, such as porosity, permeability as well as drainage boundary. However one of the important parameters requiring in this economic evaluation is the equivalent drainage area of the well, which relates the actual volume of fluids (e.g gas) produced or withdrawn from the reservoir at a certain moment that changes with time. It is difficult to predict this equivalent drainage area of well in tight gas reservoir as it takes utterly long time for reservoir pressure to reach to the impermeable physical boundary of the reservoir. The effective drainage area, which grows with time during the transient period; and consequently it is much smaller than the physical drainage arear over the transient flow period in case of tight gas reservoir because of the low permeability. Consequently the production forecasting using physical drainage area (as generally considered for conventional reservoir) can results not only significant error in estimation but also mislead the decision making process. In this paper however, a practical method for predicting the equivalent drainage area of a fractured well in tight gas reservoir is proposed. This method is based upon combined gas material balance equation and decline curve analysis. The developed method is validated against reservoir simulation results, which demonstrates that the proposed method is accurate enough to predict the equivalent drainage area, and may be considered as a practical tool for production forecasting for tight gas reservoir. Sensitivity analyses are carried out to investigate various factors, such as porosity, permeability, facture length on equivalent drainage area for fractured vertical well in tight gas reservoir. Based on the sensitivity study it is observed that the fracture half-length and the porosity have strong impact on the equivalent drainage area, and propagation of equivalent drainage area with time.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3