Stability of Partially Hydrolyzed Polyacrylamides at Elevated Temperatures in the Absence of Divalent Cations

Author:

Seright R.S.. S.1,Campbell A.R.. R.1,Mozley P.S.. S.1,Han Peihui2

Affiliation:

1. New Mexico Tech

2. Daqing Oilfield Company, PetroChina

Abstract

SummaryAt elevated temperatures in aqueous solution, partially hydrolyzed polyacrylamides (HPAMs) experience hydrolysis of amide side groups. However, in the absence of dissolved oxygen and divalent cations, the polymer backbone can remain stable so that HPAM solutions were projected to maintain at least half their original viscosity for more than 8 years at 100°C and for approximately 2 years at 120°C. Within our experimental error, HPAM stability was the same with and without oil (decane). An acrylamide-AMPS copolymer [with 25% 2-acrylamido-2-methylpropane sulphonic acid (AMPS)] showed similar stability to that for HPAM. Stability results were similar in brines with 0.3% NaCl, 3% NaCl, or 0.2% NaCl plus 0.1% NaHCO3. At temperatures of 160°C and greater, the polymers were more stable in brine with 2% NaCl plus 1% NaHCO3 than in the other brines. Even though no chemical oxygen scavengers or antioxidants were used in our study, we observed the highest level of thermal stability reported to date for these polymers. Our results provide considerable hope for the use of HPAM polymers in enhanced oil recovery (EOR) at temperatures up to 120°C if contact with dissolved oxygen and divalent cations can be minimized.Calculations performed considering oxygen reaction with oil and pyrite revealed that dissolved oxygen will be removed quickly from injected waters and will not propagate very far into porous reservoir rock. These findings have two positive implications with respect to polymer floods in high-temperature reservoirs. First, dissolved oxygen that entered the reservoir before polymer injection will have been consumed and will not aggravate polymer degradation. Second, if an oxygen leak (in the surface facilities or piping) develops during the course of polymer injection, that oxygen will not compromise the stability of the polymer that was injected before the leak developed or the polymer that is injected after the leak is fixed. Of course, the polymer that is injected while the leak is active will be susceptible to oxidative degradation. Maintaining dissolved oxygen at undetectable levels is necessary to maximize polymer stability. This can be accomplished readily without the use of chemical oxygen scavengers or antioxidants.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3