Application of Assisted History Matching to Unconventional Assets

Author:

Al-Rukabi Muhammed1,Forouzanfar Fahim1

Affiliation:

1. ExxonMobil Upstream Research Company

Abstract

Abstract Characterization of key parameters in unconventional assets continues to be challenging due to the geologic heterogeneity of such resources and the uncertainty associated with fracture geometry in stimulated rock. Limited data and the accelerating pace of asset development in plays like the Permian present an increasing need for an efficient and robust assisted history matching methodology that produces better insights for asset development planning decisions, e.g. well spacing. A multi-scenario approach is presented to build an ensemble of history matched models that take into account existing uncertainty in reservoir description and well completions. We discuss parametrization of key uncertainties in the reservoir rock, fluid properties, fracture geometry and the effective permeability of stimulated rock. Ensemble-based assisted history matching algorithms are utilized to reduce and characterize the uncertainties in the model parameters by honoring various types of data including field dynamic data and measurements. We discuss the implementation of automated schemes for weighting of various types of data in the ensemble-based history matching algorithms. These schemes are introduced to define the history matching objective functions from various types of data including bottomhole pressure data, and the oil, water and gas productions rates. The computational results show that our adaptive scheme obtains better history match solutions. The presented multi-scenario approach, coupled with the ability to efficiently run a high number of scenarios, enables better understanding of reservoir and fracture properties and shortens the learning curve for new development in unconventional assets. The shown case study illustrates a comprehensive analysis, using thousands of simulation cases, to obtain multiple history match solutions. Given the non-uniqueness of reservoir history matched models presented in the scenarios, this workflow improves forecasting ability and enables robust business decision makings under uncertainty.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3