Effect of Clay and Water Salinity on Electrochemical Behavior of Reservoir Rocks

Author:

Hill H.J.1,Milburn J.D.1

Affiliation:

1. Shell Oil Co.

Abstract

Published in Petroleum Transactions, Volume 207, 1956, pages 65–72. Abstract In quantitative interpretation of electrical logs the presence of clay minerals introduces an additional variable which further complicates an already complex problem. Although recognizing the difficulties introduced as a result of the heterogeneity of natural sediments and despite the present incomplete state of knowledge regarding electrochemical behavior of shades, disseminated clay minerals and concentrated electrolytes, it was felt that useful empirical correlations might be obtained from experimental investigation. Six typical sandstone formations, having a wide variety of petrophysical properties, were selected for the study. Approximately 45 samples from each formation were selected to satisfactorily represent the range of pore size distribution within the particular formation. As a matter of general interest, four limestone formations were also included in the investigation. Previously proposed equations relating to resistivity, SP and interrelationship of the two phenomena have, where possible, been tested with data obtained in this investigation. These equations do not satisfactorily describe experimental behavior of samples through all degrees of shaliness or throughout the range of brine solution resistivities normally encountered in logging practice. An empirical equation has been developed which quantitatively relates formation resistivity factor to saturating solution resistivity, porosity, and "effective clay content." This relation is indicated to be uniformly applicable to clean or shaly reservoir rocks. It is shown that both the SP and resistivity phenomena of shaly samples are related to the sample cation exchange capacity per unit pore volume. The independent chemical determination of this parameter is thus a means of determining the "effective clay content" of samples. Some implications regarding theory and electric log interpretation of shaly sands are discussed. Introduction The use of electrical resistivity logs as a means for estimating formation porosity is based upon the original work of Archie.

Publisher

Society of Petroleum Engineers (SPE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3