Efficient Through-Casing Surveillance of Steam Chamber and Reservoir Oil Using a New Pulsed Neutron Technology and an Advanced Interpretation Algorithm

Author:

Kim Yonghwee1,Kotov Alexandr1,Chace David1,Yuan Peng1,Anniyev Toyli1,Inanc Feyzi1,McGlynn Ian1

Affiliation:

1. Baker Hughes

Abstract

AbstractSteam flooding is an essential recovery process in developing heavy oil reservoirs. Operators typically drill and case observation wells to monitor the movement of the injected steam and changes in heavy oil and water saturations. This in-well surveillance is performed using pulsed neutron well logging techniques.Pulsed neutron well logging technology has been used for more than 60 years to determine formation fluid saturation behind casing. We introduce a next-generation slim multi-detector pulsed neutron well logging tool. The new pulsed neutron tool integrates an upgraded pulsed neutron generator, lanthanum bromide scintillation detectors, and an improved electronics system.A robust data analysis technique is another vital component of through-casing multiphase formation fluid quantification. A conventional method for analyzing three-phase saturation uses two pulsed neutron logs in sequence. We have adopted a simultaneous analysis approach that combines two pulsed neutron measurements simultaneously to evaluate the volumes of multiphase fluid components.We present a case study of oil sands produced by the steam-assisted gravity drainage (SAGD) method. We also show comparisons of data acquisition with the previous-generation and new pulsed neutron tools, operating time, and data quality. We acquired time- and energy-based gamma-ray spectra from multiple detectors to extract key pulsed neutron measurements such as ratios of inelastic and capture gamma rays and carbon/oxygen ratios. Time- and energy-spectra-based salinity-independent nuclear measurements were combined to compute three-phase formation fluid saturation. The new tool acquired data of the same quality at least three times faster than the legacy tool. The new tool that offers three improved features (higher pulsed neutron outputs, denser scintillation detectors, and high-speed digital electronics) combined with a new acquisition technology that records time- and energy-spectra-based pulsed neutron data sets simultaneously enables faster reservoir surveillance.Operators using thermal methods for heavy oil recovery must understand the current underground steam distribution. This affects steam injection optimization and determines subsequent reservoir management activities. A technique for delineating steam, heavy oil, and water through cased monitoring wells was improved by incorporating a new well logging tool, an innovative acquisition mode, and an advanced nuclear data analysis workflow.

Publisher

SPE

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3