Annular Pressure Build-up Analysis and Methodology with Examples from Multifrac Horizontal Wells and HPHT Reservoirs

Author:

Bellarby Jonathan1,Kofoed Sara Sparre2,Marketz Franz2

Affiliation:

1. Canmore Consulting Ltd

2. Maersk Oil

Abstract

Abstract Annulus pressure build-up (APB) remains an important design consideration for many wells, not just deepwater or subsea wells. This paper outlines a step-by-step methodology for analysing APB issues applicable to any type of well. Analyses of APB scenarios for a tight chalk oil reservoir and an HPHT gas-condensate reservoir in the Danish Sector of the North Sea are used to demonstrate the methodology. APB is a potentially serious issue with HPHT wells created by annuli that heat up during production. The increased temperatures cause fluid expansion that can potentially over-stress the casing and tubing if not mitigated. Specific issues for HPHT wells are presented. The significant increase in the use of multi-stage horizontal fracturing systems with open or cased hole packers and ball or intervention operated sliding sleeves creates a fluid contraction threat. Overpressure through annulus fluid contraction caused by cooling has been rarely analysed. A case is shown to disprove a common belief that the fluid external to the sleeves equalizes with the reservoir over the time frame of the stimulation operation which prevents over-pressurization. Failure cases are presented along with the design calculations required to assess the combination of tubing ballooning, fluid contraction / expansion and transient reservoir flow. It is demonstrated that with cases of toe-to-heel stimulation combined with low reservoir permeabilities, significant transient drops in pressure external to the sleeves can occur. This can lead to tubing, sleeve or packer failures.

Publisher

SPE

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3