Uncertainty Quantification of a Chemically Enhanced Oil Recovery Process: Applying the Probabilistic Collocation Method to a Surfactant-Polymer Flood

Author:

Alkhatib A..1,King P..1

Affiliation:

1. Imperial College London

Abstract

Abstract Uncertainty in surfactant-polymer flooding is an important challenge to the wide scale implementation of this process. Any successful design of this enhanced oil recovery process will necessitate a good understanding of uncertainty. Thus it is essential to have the ability to quantify this uncertainty in an efficient manner. Monte Carlo Simulation is the traditional uncertainty quantification approach that is used for quantifying parametric uncertainty. However, the convergence of Monte Carlo simulation is relatively low requiring a large number of realizations to converge. This study proposes the use of the probabilistic collocation method in parametric uncertainty quantification for surfactant-polymer flooding using four synthetic reservoir models. Four sources of uncertainty were considered: the chemical flood residual oil saturation, surfactant and polymer adsorption and the polymer viscosity multiplier. The output parameter approximated is the recovery factor. The output metrics were the probability density function and the first two moments. These were compared with the results obtained from Monte Carlo simulation over a large number of realizations. Two methods for solving for the coefficients of the output parameter polynomial chaos expansion are compared: Gaussian quadrature and linear regression. The linear regression approach used two types of sampling: Gaussian quadrature nodes and Chebyshev derived nodes. In general, the probabilistic collocation method was applied successfully to quantify the uncertainty in the recovery factor. Applying the method using Gaussian quadrature produced more accurate results compared with using linear regression with quadrature nodes. Applying the method using linear regression with Chebyshev derived sampling also performed relatively well. Possible enhancements to improve the performance of the probabilistic collocation method were discussed. These enhancements include: improved sparse sampling, approximation order independent sampling and using arbitrary random input distribution that could be more representative of reality.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3