An Evaluation of the Impact of Reactive Perforating Charges on Acid Wormholing in Carbonates

Author:

Diaz N. J.1,Bell M. R.2,Hardesty J. T.2,Hill A. D.1,Nasr-El-Din H. A.1

Affiliation:

1. Texas A&M University

2. Geodynamics, Inc.

Abstract

Abstract The introduction of reactive perforating systems has led to tremendous improvements in well stimulation and productivity. Reactive charges generate a secondary energy release in the perforation tunnel immediately after it is formed, breaking up and expelling debris to leave clean tunnels across the perforated interval, irrespective of formation properties. Although Bartko et al. (2007) have shown that clean perforation tunnels facilitate the evolution of a single, deeper-penetrating wormhole, there are no reported applications of reactive shaped charges in carbonates prior to acid stimulation. The present study was instigated to evaluate the impact of reactive charges on acid wormholing in representative carbonate cores. A set of oil-saturated cores have been perforated under simulated downhole conditions, using either a conventional or a reactive shaped charge of equal explosive load. After CT scanning to eliminate outlying perforations affected by rock property anomalies, the set of cores were subjected to identical acid injection treatments representative of typical carbonate reservoir stimulations. Time to breakthrough and effluent chemistry were both analyzed and recorded. Finally, post-stimulation CT scans were used to evaluate wormhole morphology. The laboratory experiments showed that reactive charges provide cleaner perforation tunnels with higher injectivity, which is beneficial for any type of stimulation job. Higher injectivity tunnels help to propagate more dominant and straighter wormholes resulting in less acid to propagate a given distance. This technology has a significant potential when perforating tight formations or heterogeneous intervals, where obtaining clean tunnels with conventional perforators is most challenging. Further research work needs to be done to evaluate if the difference in acid volume to breakthrough observed in the experiments would have a major impact in the field.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3