Modeling the Application of Scale-Inhibitor-Squeeze-Retention-Enhancing Additives

Author:

Vazquez O..1,Thanasutives P..2,Eliasson C..3,Fleming N..3,Mackay E..1

Affiliation:

1. Heriot-Watt University

2. PTT Exploration and Production Plc

3. Statoil

Abstract

Summary The most common method for preventing scale formation is by applying a scale-inhibitor (SI) squeeze treatment. In this process, an SI solution is injected down a producer well into the near-wellbore formation. In the last few years, several publications have presented experimental results, field data, and treatment methods showing enhanced squeeze lifetime because of the use of squeeze enhancers. The main purpose of this paper is to model the effect of SI-retention-enhancing additives. These additives are normally deployed in reservoirs where the SI shows poor retention in the formation matrix in order to reduce well interventions. In the last few years, a number of techniques to enhance the SI retention have been reported in the literature, such as precipitation squeezes using calcium and/or pH-increasing additives, use of an additive package that enhances SI adsorption by crosslinking, and the injection of nondamaging concentrations of kaolinite, calcium carbonate, and organosilane (a solids-fixation agent). The effect of the SI-retention enhancer is modeled as a function of the adsorption level of the additive. A sensitivity study is then presented on the effect of deploying the additive in the different stages; normally, they are deployed in the preflush stage. However, the aim of this paper is to investigate how the treatment could be optimized to achieve the longest squeeze lifetime with a fixed amount of additive. An example of modeling a specific field treatment injecting organosi-lane is included. The results are compared with the field return profiles and clearly demonstrate the value such modeling can bring to the interpretation and design of field squeezes.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3