Energy-Efficiency Technologies for Reduction of Offshore CO2 Emissions

Author:

Mazzetti Marit Jagtøyen1,Nekså Petter1,Walnum Harald Taxt1,Hemmingsen Anne Karin T.1

Affiliation:

1. SINTEF Energy Research

Abstract

Summary This paper will discuss novel technologies for increasing the energy efficiency of offshore oil and gas platforms. Three case studies are in progress that are based on actual oil-producing platforms--two on the Norwegian Continental Shelf (NCS) and one in the Brazilian basin. The current focus is on developing compact, novel bottoming cycles for recovery of waste heat from the gas turbine and heat recovery from the compressor train for gas export. The technologies under investigation use steam and alternative working fluids, such as carbon dioxide (CO2) and hydrocarbons. All the fluids investigated in this project are natural working fluids; hence, they will not cause any unexpected environmental issues in the future. A case study was performed that considered an 18-year period of operation on an actual platform and a scenario in which one gas turbine was removed and replaced with a CO2 bottoming cycle by use of the exhaust heat from a different gas turbine. The beauty of this scenario is that it would not increase the weight on the platform because the crate containing the gas turbine to be removed was of a weight similar to that of the crate containing the CO2 bottoming cycle. The substitution would not affect the ability to cover the heat demand on the platform because a waste-heat-recovery unit (WHRU) could be installed on the platform's other gas turbine. The case study indicates a significant reduction in CO2 emissions of 22% (63 000 t/a), and does not involve adding additional weight or volume to the platform. If operating on the NCS, the annual savings in reduced fuel costs and CO2 tax from implementing this scenario would be USD 17 million, although much lower in other territories.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3