Analysis of a Steam Drive Project, Inglewood Field, California

Author:

Blevins T.R.1,Aseltine R.J.2,Kirk R.S.3

Affiliation:

1. Chevron Oil Field Research Co.

2. Standard Oil Co. of California

3. U. of Massachusetts

Abstract

This is the first reported California field data on the vertical extent and residual oil saturation of the steam swept zone. Field-derived data on reservoir heat distribution support the published theoretical data. Introduction The Inglewood field, discovered in 1924, occupies a faulted anticline along the Newport-Inglewood Fault System on the western edge of the Los Angeles basin (Fig. 1). The Upper Investment zone, UB sand, selected for this test is the shallowest producing reservoir in the field and lies about 1,000 ft below surface ( 650 subsea). The UB sand productive limit are defined by an updip sand pinchout, the Inglewood Fault, and by down-dip water. The UB sand is 40 to 60 ft thick, consists of fine- to coarse-grain sand with occasional pebbles, ranges from soft to unconsolidated, is overlain by a thick siltstone section and has bottom water. The reservoir properties are shown in Table 1, and electric log characteristics in Fig. 2. The air permeability ranges from 3.3 to 14.3 darcies in the top 40 ft of the reservoir, and porosity averages 39 percent. The primary producing mechanism is pressure depletion with primary producing mechanism is pressure depletion with water encroachment. Oil in place at start of project was 1,930 bbl/acre-ft. The Investment zone oil is asphalt base, 14 degrees API gravity with an in-situ viscosity of 1,200 cp. The high oil viscosity, low reservoir pressure, shallow depth and high oil saturation are all favorable for application of thermal recovery methods. Preliminary laboratory studies of steamflooding in Inglewood cores indicated that residual oil saturations of approximately 20 percent could be achieved with throughput of 1 PV of water converted to steam. Chevron Oil Field Research Co. and Standard Oil Co. of California, WOI conducted the Investment zone lost to learn if the low laboratory residual saturations could be obtained in the field and to determine the oil displacement efficiency in the project area. The test was designed to obtain data on vertical and areal coverage, heat losses, and rate of steam front advance, and to evaluate producing problems associated with continuous steam injection. Design Project Area Project Area Fig. 3 shows the steamflood pilot layout. It is an inverted six-spot containing 2.6 acres within the five first-line producing wells. The project area of the reservoir has essentially no dip. Injection Well 270 and Temperature Observation Wells 271, 272, 273 and 293, were newly drilled for the project. The location of Wells 304 and 304A, which were drilled specifically to obtain post-steam saturation, is also shown in Fig. 3. Well Completions The injection well was completed in only the top 40 ft of sand to avoid water and was perforated in a 30-ft interval 10 ft below the top of the sand. The four temperature observation wells were completed by cementing 3 1/2-in. tubing through the UB sand to surface. Observation Well 271 also was cored to establish presteam saturations in the pilot area. JPT P. 1141

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mobility-Control Processes;Enhanced Oil Recovery;2018

2. Thermal Recovery Processes;Enhanced Oil Recovery;2018

3. FEASIBILITY OF A STEAM FLOOD IN EWAN RESERVOIRS, NIGER DELTA;Petroleum Science and Technology;1998-08

4. A critical evaluation of preliminary design techniques for steam drive projects;Journal of Petroleum Science and Engineering;1990-11

5. Chapter 7 Steam Enhanced Oil Recovery;Developments in Petroleum Science;1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3