Affiliation:
1. Colorado School of Mines
Abstract
Abstract
Monitoring of multi-stage hydraulic fractures in unconventional reservoirs has shown that some fractures are more effective and productive than others. Stress shadowing, in addition to reservoir lateral heterogeneity, are two potential factors behind this phenomenon. The focus of this study is to find the optimum hydraulic fracture spacing that aims to reduce the stress shadowing effect and ensure placement of hydraulic fractures in the best quality reservoir rock along the horizontal lateral.
A base hydraulic fracture model was created for a well in the Eagle Ford reservoir. Fiber optic distributed acoustic sensing (DAS) data were analyzed to find the individual perforation cluster contribution to production based on the total proppant placed in each cluster. The modeled well cluster contribution and production data were then matched with actual data. Reservoir and geomechanical properties for certain stages of the horizontal wellbore were altered from the base model to address the effect of rock quality lateral variations. Four scenarios of 57 ft, 76 ft, 100 ft, and 142 ft spacing between perforation clusters were investigated to address the effect of stress shadowing.
The sensitized reservoir and geomechanical properties include matrix permeability, Poisson's ratio, and Biot's coefficient. Increasing the matrix permeability from a base value of 0.2 ?D to 2 ?D caused the flowing fracture lengths to increase by 69%, 68%, and 48% in the heel, middle, and toe clusters, respectively. Stages with higher Poisson's ratio of 0.33, compared to a base value of 0.28, created larger flowing fracture lengths by 32% and 41% in the heel and middle clusters. Altering Biot's coefficient resulted in the same effect on flowing fracture lengths as altering Poisson's ratio. Overall, the rate of increase in flowing fracture lengths as a response to changing these properties was found to be more pronounced in the heel and middle clusters but less evident in the toe clusters. As for the cluster spacing scenarios, simulations showed that tighter spacing scenarios yielded a larger fracture network volume due to the higher number of clusters. However, these created fractures were less conductive than the ones created with wider spacing scenarios due to the stress shadowing effects. Production runs showed that scenarios with more accessed reservoir volume via more perforation clusters yielded a larger cumulative production over a 30-year simulation period.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献