Integrated Field Development Modelling to Improve Recovery from a Complex Fractured Carbonate Reservoir with Potential for Low Salinity Waterflooding EOR

Author:

Al-Subaihi Meshari1,Al-Rashidi Tahani1,Prasad Raj Kishore1,Dutta Dipankar1,Kshirsagar Atul2,Patil Tushar2,Nagarkoti Malvika2,Burns Christopher2,Cranfield Colin Bertrand2

Affiliation:

1. Kuwait Oil Company

2. Baker Hughes

Abstract

Abstract Integrated field development studies were performed to increase oil recovery from the Marrat reservoir in the Umm Gudair field, a large, low permeability, complex, naturally fractured and highly faulted carbonate reservoir. The studies involved rebuilding the static model, creating and history matching a new dynamic model and using it to examine redevelopment scenarios. These included well interventions and workovers under primary depletion, secondary waterflood and, following a screening exercise, low salinity flooding (LSF). A new structural interpretation of 3D seismic data provided a revised static geological model and yielded insight into the number, geometry and origin of the many faults intersecting the reservoir. Rock types defined from core analysis were distributed in the static geological model using trends from Bayesian lithofacies classification based on pre-stack inversion of seismic data. Porosity and permeability were modelled by rock type. Saturation-height functions for each rock type were developed from mercury injection capillary pressure (MICP) data; and the reservoir free water level was varied so that these functions honoured the log-based water saturation interpretation. The dynamic model input description was based on available and interpreted data for the assumed oil wet reservoir. The history matching was aided by sophisticated application of decline curve analysis (DCA) and used an Opportunity Index approach to optimise well placement. The history matching led to a simplified and effective solution for characterising the locally naturally fractured reservoir nature. The effect of high permeabilities associated with increased fracture density was accommodated by introducing facies-based and distance from fault-related permeability modifiers, while maintaining geological rigour. The dynamic model was used to examine a range of field redevelopment scenarios. This showed that LSF could enhance field recovery and achieve a three-fold increase in estimated ultimate recovery, in conjunction with other improved reservoir management strategies. The results provided support for specialised laboratory and dynamic modelling investigations as a precursor to LSF pilot trials. A low cost source of LSF injectant was identified which could contribute to lowering the overall carbon footprint.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3