Experimental Investigation of Aloe-Vera-Based CuO Nanofluid as a Novel Additive in Improving the Rheological and Filtration Properties of Water-Based Drilling Fluid

Author:

Mansoor Hameed Hussain Ahmed1,Devarapu Srinivasa Reddy2,Samuel Robello3,Sharma Tushar4,Ponmani Swaminathan5

Affiliation:

1. AMET University

2. UPES

3. Halliburton

4. RGIPT

5. AMET University (Corresponding author; email: ponumane@gmail.com)

Abstract

Summary Drilling technology in petroleum engineering is associated with problems such as high fluid loss, poor hole cleaning, and pipe sticking. Improvement of rheological and filtration properties of water-based drilling fluids (WDFs) plays a major role in resolving these drilling problems. The application of nanotechnology to WDF in the recent past has attracted much attention in addressing these drilling operations problems. In the present work, we investigate the application of natural aloe vera and CuO nanofluids combined as an additive in WDF to address the drilling problems. The nanofluids of three different concentrations of CuO nanoparticle (0.2, 0.4 , and 0.6 wt%) with aloe vera as a base fluid are prepared for this study by adopting a two-step method. The prepared nanofluids are characterized by their particle size and morphological characteristics. Conventional WDF (DF.0) is synthesized, and the prepared aloe-vera-based CuO nanofluid is added to the WDF to prepare nanofluid-enhanced water-based drilling fluid (NFWDF) of different concentrations of nanoparticles, namely, 0.2 , 0.4, and 0.6 wt%. The prepared drilling fluid mixture is then characterized for its rheological and filtrate loss properties at various temperatures. Thermal stability and aging studies are performed for both WDF and NFWDF. The experimental results are then modeled using rheological models. The results reveal that aloe-vera-based CuO nanofluids improve the thermal stability and rheological properties of drilling fluid and significantly decrease the American Petroleum Institute (API) filtrate. Viscosity for WDF shows an approximately 61.7% decrease in heating up to 90°C. Further, the hot roll aging test causes a 63% decrease in the viscosity of WDF at 90°C. However, the addition of aloe-vera-based CuO nanofluids is found to aid in recovering the viscosities to a great extent. The fluid loss values before hot rolling are observed to be 6.6 mL after 30 minutes, whereas fluid loss values for the NFWDFs are found to be 5.9, 5.4, and 4.6 mL, respectively. The fluid loss value after hot rolling for the WDF is found to be 10.8 mL after 30 minutes, whereas fluid loss values for the NFWDFs are found to be 9.2, 8.5, and 7.7 mL, respectively. The rheological performance data of NFWDF project a better fit with the Herschel-Bulkley model and suggest improvement in rheological and filtration properties. There has been limited research work available in understanding the impact of aloe-vera-gel-based nanofluids in improving the performance of WDFs through the improvement of its rheological and filtration properties. This study aims to exploit the property of native aloe vera and CuO nanofluids combined together to enhance the rheological and filtration properties of WDF by conducting the tests both before and after hot rolling conditions. This study acts as an important precursor for developing novel additives for WDF to improve its rheological and filtration properties. This study is also expected to benefit the industry and solve the major challenges in deep-well drilling operations and high-pressure and high-temperature (HPHT) drilling operations.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3