A Unique Use of New Generation Pulsed Neutron Tool Integrated with Advanced Production Logging to Evaluate Gas Production from an Oil Well: A Case Study from Offshore UAE

Author:

Al Afeefi Baraka Said1,Bong Saudyano1,Mustafa Hammad2,Kuliyev Myrat2,Chitre Sunil2,Bazuhair Ahmed Khalid2,Anurag Atul Kumar2,Dasgupta Suvodip1,Sookram Neil1,Mosse Laurent1

Affiliation:

1. Schlumberger

2. ADNOC Offshore

Abstract

Abstract In a green field located in offshore Abu Dhabi, a new well was drilled in an oil-bearing zone and was completed with slotted liner inside a 6-in horizontal drain hole. Abnormally high gas rates were reported during the surface production testing of this well. This paper highlights the unique use of a new pulsed neutron tool combined with an advanced production logging tool for assessment of the well performance and identification of the source of gas breakthrough. This combination of advanced technology tools with measurements from array flowmeters, optical gas holdup sensors, and a new generation pulsed-neutron tool was deployed in the well to provide reliable flow type, borehole, and formation measurements in a gas environment. A multidisciplinary approach involving production engineering, petrophysics, and well integrity was essential in diagnosing this unexpected issue of high gas production. An integration of the various results from production logging, the pulsed neutron measurements, and open-hole and cement log data has helped in confirming the source of the produced gas. The acquired production log (PL) data revealed gas entry from the top of the lower completion and no presence of free gas below that depth. The zonal contributions from the horizontal lateral quantified from the acquired data also helped in assessing the productivity of the reservoir. The pulsed neutron log (PNL) measurements were acquired in the second run, which then helped confirm the borehole fluid properties and to identify and quantify the formation fluids. Combining the PNL and PL data helped identify the gas entry point accurately. Based on the integrated data interpretation, it was confirmed that the gas could not originate from the reservoir being produced through the lower completion and that there must be gas channeling downward through channels in the cement behind the casing from a gas reservoir above the oil reservoir. The unique use of the advanced PNL data and its integration with other log data facilitated the successful identification of the gas source and quantified zonal contributions in a challenging logging environment.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3