Successful Field Application of Organophilic Clay-Free Invert Emulsion Fluid to Protect the Reservoir Core from Drilling Fluid Damage: Case Study from a Kuwait Field

Author:

Al-Ajmi Abdullah1,Al-Rushoud Abdulaziz1,Gohain Ashis1,Khatib Faiz1,Al-Haj Hussain1,Al-Naqa Faisal1,Al-Mutawa Faisal1,Al-Gharib Majed1,Shinde Hrishikesh1,Arora Saurabh1,Arrar Bader1,Bumaryoum Manar1,Al-Mousa Aref2,Sagirov Rustem2,Reda Tamer2,Hamed Ramy2

Affiliation:

1. Kuwait Oil Company

2. Halliburton

Abstract

Abstract To optimize production from a key reservoir, obtaining a core sample with minimum fluid invasion and damage was necessary. In addition, operational nonproductive time (NPT) related to drilling challenges, such as interbedded formations of varying formation pressures, wellbore instability in the reactive, stressed shale sections, and hole cleaning concerns, needed to be mitigated. This paper describes the design of the drilling fluid and its performance in the field. After completion of the first dump flood water injection well drilled using an 80/20 conventional nonaqueous fluid (NAF) weighted with barite, low injectivity was observed, which led to acquiring cores to analyze permeability and porosity along with the change in mineralogy resulting from long exposure of the reservoir in the water zone. A 70/30 organophilic clay-free (OCF) NAF was selected to mitigate equivalent circulating density (ECD) risks and minimize damage. Proprietary software was used to customize the bridging design, which was verified during laboratory testing, and to help ensure adequate hole cleaning with the customized low-ECD fluid. The engineered OCF NAF contained no damaging materials, such as barite, asphaltic material, or organophilic clay. OCF NAFs are well suited to low-ECD drilling operations because they are more resistant to weighting material sag than conventional NAF systems of similar rheology. This is a product of the high gel strengths developed, even in low-rheology (low-ECD) fluids. Downhole pressure fluctuations are low because these gels are fragile and break easily. For the well in which this OCF NAF was used, drilling, coring, and logging operations were successfully completed without incident. Four cores were acquired with minimal damage compared to the previous wells resulting from the engineered design of the bridging material and fluid-loss control polymers. In addition, there was minimal erosion to these four cores, which was a result of the low-ECD fragile gel fluid used. The fluid-loss control properties of the fluid were also effective in strengthening the wellbore and eliminating differential stuck pipe tendencies that had been observed in previous wells. The fluid properties resulted in minimal ECD, and the OCF NAF displayed excellent suspension along with improved pressure management; no pressure spikes occurred while breaking circulation. There was no NPT related to wellbore instability or any of the drilling challenges previously identified. This unique organophilic clay-free and organolignite-free drilling and coring fluid relies on a specialized technology involving an interaction between the emulsifier package and the polymer additives in the fluid. This provides the behaviors needed for reliable weight material suspension and suitable hole cleaning properties in a low-ECD drilling fluid. Together with the appropriately designed bridging package, the OCF NAF provided a better understanding of the reservoir characteristics by delivering the core with minimal damage.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of fibrous organoclays in oil-based drilling fluids;Clay Science in Drilling and Drilling Fluids;2024

2. Drilling fluids;Fluid Chemistry, Drilling and Completion;2022

3. Invert Drilling Fluids with High Internal Phase Content;Energies;2021-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3