Coupled Adsorption/Precipitation of Scale Inhibitors: Experimental Results and Modeling

Author:

Kahrwad M.1,Sorbie K. S.1,Boak L. S.1

Affiliation:

1. Heriot-Watt University

Abstract

Summary In this paper, results are presented on the general mechanisms by which scale inhibitors (SIs) are retained within porous media. There is a generally accepted view that the main two mechanisms of SI retention are "adsorption" and "precipitation," and these are described by different but related modeling approaches in the literature. These approaches have been used quite successfully to model field squeeze treatments. To analyze in a detailed and unambiguous manner where a given retention mechanism (e.g., pure adsorption) or mechanisms (e.g., coupled adsorption and precipitation) are operating requires that we carry out careful laboratory experiments under "field relevant" conditions. In this work, we study adsorption vs. adsorption/precipitation by performing a series of experiments where we know that the system exhibits either (a) adsorption only or (b) coupled adsorption/precipitation. Experimentally, it is straightforward to determine which regime the system is in. We present the theory describing the coupled adsorption/precipitation process. In addition, an extensive series of experimental adsorption/precipitation measurements is presented for various mineral separates including sand, chlorite, siderite, muscovite, kaolinite, and feldspar. The coupled adsorption/precipitation model is in very good agreement with the experiment.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3