Reduction of Residual Oil Saturation in Sandstone Cores Using Viscoelastic Polymers

Author:

Qi Pengpeng1,Ehrenfried Daniel H.1,Koh Heesong1,Balhoff Matthew T.1

Affiliation:

1. The University of Texas at Austin

Abstract

Abstract Water-based polymers are often used to improve oil recovery by increasing displacement sweep efficiency. However, recent laboratory and field work has suggested these polymers, which are often viscoelastic, may also reduce residual oil saturation. The objective of this work is to investigate the effect of viscoelastic polymers on residual oil saturation in Bentheimer sandstones and identify conditions and mechanisms for the improved recovery. Bentheimer sandstones were saturated with a heavy oil (120cp) and then waterflooded to residual oil saturation using brine followed by an inelastic Newtonian fluid (diluted glycerin). These floods were followed by injection of a viscoelastic polymer, hydrolyzed polyacrylamide (HPAM). Significant reduction in residual oil was observed for all core floods performed at constant pressure drop when the polymer had significant elasticity (determined by the dimensionless Deborah number, NDe). An average residual oil reduction of 5% OOIP was found during HPAM polymer floods for NDe of 0.6 to 25. HPAM floods with very low elasticity (NDe<0.6) did not result in observable reduction in residual oil saturation; however, another 10% OOIP residual oil was reduced when the flow rate was increased (NDe>25). All experiments at constant pressure drop indicate polymer viscoelasticity reduces the residual oil saturation. Results from CT scans further support these observations. A correlation between Deborah number and residual oil saturation is also presented.

Publisher

SPE

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3