Innovative Hybrid Bit Mitigates Geological Uncertainties, Improves Drilling Performance in Brazilian Pre-Salt Formations

Author:

Hbaieb Slim1,Azar Michael1,Bits Smith1

Affiliation:

1. a Schlumberger Company

Abstract

Abstract An innovative hybrid bit design has been successfully applied offshore Brazil to mitigate geological/formation uncertainties in pre-salt formations and eliminate several trips for new bits. In the application, PDC bits can drill these carbonates effectively until the cutters are damaged by problematic chert inclusions. The hybrid bit is capable of similar ROP and run lengths as standard PDC and allows the operator to achieve a long run at high ROP when no silicate inclusions are present. However, the hybrid bit also provides the added benefit of continued drilling at reasonable ROP when a nodule is encountered with its secondary and tertiary cutting elements. The unique hybrid design utilizes grit hot-pressed inserts combined with alternating PDC shearing elements and wedge shaped TSPs all set in an impregnated post-on-blade design. Extended bit life is achieved when the cutting mechanism changes from shearing to grinding as the PDC/TSP elements are worn away. When the PDC cutting structure is worn down to 50%, the bit still has 75% of life remaining. The paper will focus on case studies where pre-salt carbonate lithology is non-uniform with a high occurrence of silicate inclusions. The authors will discuss drive system and drilling parameters selection that were critical to achieving the desired performance. When used with the appropriate BHA and drilling parameters, the hybrid bit displayed good ROP performance and total footage capabilities. Lower cost/meter was achieved because the hybrid bit had faster initial ROP compared to PDC and stayed on bottom drilling longer due to improved durability with TSP then impregnated cutting structures. Cuttings size and resulting lithology analysis will also be discussed. Engineers are currently working on a real-time surface/downhole data processing system to detect when the impregnated cutting structure engages formation in order to make changes in operating parameters to maximize drilling efficiency and penetration rates.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3