Geochemical Investigation of Water Composition Effect on Formation Damage and Related Oil Recovery in Carbonates

Author:

Khurshid Ilyas1,Al-Shalabi Emad W.1,Alameri Waleed1

Affiliation:

1. Khalifa University of Science and Technology

Abstract

Abstract Several benefits of low salinity/engineered water injection (LSWI/EWI) have been reported in the literature including its ability to increase oil recovery at low cost and with least environmental impact. However, the related reservoir-engineering problems to these techniques such as formation damage and fluid mobility control are still uncertain and have not been thoroughly investigated. This study investigates the effect of water composition on formation damage and the related oil recovery from a geochemical prospective. The study presents coupling of the IPhreeqc geochemical engine with Matlab to simultaneously solve the oil-water multiphase flow and the related geochemical reactions. Using this coupling technique, the geochemical capabilities of Phreeqc were successfully incorporated in a multiphase flow simulator. The latter enabled modeling of reactive transport and formation damage in subsurface multiphase reservoir. The results showed that the temperature, sulfate concentration, and dilution of injection water have a pronounced effect on formation dissolution and precipitation during LSWI/EWI. Also, anhydrite scale is the main controlling solid specie for formation damage. In addition, high temperature water injection should be avoided in carbonate reservoirs due to the likelihood of anhydrite precipitation and formation damage. This precipitation occurs because of the low-solubility of anhydrite at high temperature. Moreover, water dilution could decrease the scale formation while sulfate spiking might increase scale precipitation. Hence, sulfate concentration should be optimized as a wettability alteration agent to enhance oil recovery while avoid formation damage. Furthermore, as a sequence of anhydrite precipitation by sulfate spiking, oil production is expected to decrease by around 23% in the selected case study. The dissolution and precipitation mechanisms during LSWI are very case-dependent and subject of pore distribution, crude oil/brine/rock compositions, and thermodynamic conditions. Hence, the findings of this study cannot be generalized.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3