Optimum Formulation of Surfactant/Water/Oil Systems for Minimum Interfacial Tension or Phase Behavior

Author:

Salager J.L.1,Morgan J.C.1,Schechter R.S.1,Wade W.H.1,Vasquez E.1

Affiliation:

1. U. of Texas

Abstract

Abstract A screening test used to help select surfactant systems potentially effective for oil recovery is to identify those formulations that yield middle-phase microemulsions when mixed with sufficient quantities of oil and brine. A correlation is presented to link these variables regarding their presented to link these variables regarding their contributions to middle-phase formation: structure of the sulfonated surfactant, alkane carbon number (ACN), and alcohol type and concentration. WOR and temperature effects are introduced as correction terms added to the empirical correlation.Sets of variables that give middle-phase microemulsions are shown as identical to those defining the low tension state without observable middle phases. This generally occurs for low surfactant phases. This generally occurs for low surfactant concentrations. Introduction Healy and Reed and Healy et al. have shown that the phase behavior of surfactant/brine/oil systems is a key factor in interpreting the performance of oil recovery by microemulsion performance of oil recovery by microemulsion processes. By systematically varying salinity, processes. By systematically varying salinity, they found low interfacial tensions and high solubilization of both oil and water in the microemulsion phase to occur in or near the salinity ranges giving phase to occur in or near the salinity ranges giving three phases. Since both low interfacial tensions and a high degree of solubilization are considered desirable for oil recovery, the conditions for three-phase formation assume added importance. Similar conclusions have been reported in other recent papers.Several investigators have considered the effect of different variables on the range of salinities for which three phases form. This optimum salinity (a more precise definition is given in a subsequent section) has been found to decrease with increasing surfactant molecular weight, and to increase with increasing chain length of the alcohol cosurfactant. Studies on the effect of alcohols by Jones and Dreher and Salter provided results similar to those reported by Hsieh and Shah.The interfacial tension at surfactant concentrations low enough so that a discernible third phase does not form has been the subject of considerable phase does not form has been the subject of considerable investigation regarding surfactant molecular weight and structure, oil ACN, salinity and surfactant concentration, and alcohol addition. A recent paper was a first attempt to tie together the low paper was a first attempt to tie together the low tension state observed at low surfactant concentrations and the three-phase region observed at higher surfactant concentrations. All indications point to an inextricable intertwining of phase point to an inextricable intertwining of phase behavior, surfactant partitioning, solubilization, and low tensions. This paper corroborates the equivalence of three-phase behavior and minimum tension as criteria for optimum formulation and presents a correlation that quantifies the trends presents a correlation that quantifies the trends observed previously. EXPERIMENTAL Aqueous phases containing surfactant, electrolyte (NaCl), and alcohol were contacted with an oil phase by shaking and allowed to stand until phase phase by shaking and allowed to stand until phase volumes became time independent for 2 days. All concentrations are expressed in grams of chemical per cubic centimeter of aqueous phase (g/cm3) per cubic centimeter of aqueous phase (g/cm3) before contacting with the hydrocarbon phase. Unless otherwise noted, the oil phase represents 20% of the initial total volume. All measurements, unless otherwise noted, were conducted at room temperature (25 plus or minus 1 degrees C). SPEJ p. 107

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3