Novel Density-Based Autonomous Inflow Control Device Using Artificial Gravity

Author:

Greci Stephen1,Fripp Michael1,McChesney Ryan1,El Mallawany Ibrahim1

Affiliation:

1. Halliburton

Abstract

Abstract A new class of Autonomous Inflow Control Devices, AICDs, has been developed which balances production flow and restricts unwanted production fluids, even when there is no viscosity difference in the produced fluids. This novel AICD senses the density difference between oil and water and uses artificial gravity to amplify the buoyancy forces while eliminating the need for downhole orientation in the completion. AICDs have effectively reduced water production and increased oil recovery since their introduction in the early 2010s. During initial production, AICDs balance the flow across the production zone. In later production, AICDs automatically restrict the rate from zones producing water. Commercially available AICDs primarily operate by sensing the viscosity difference between oil and water. In very-light oil reservoirs, such as in parts of the Middle East, there is no significant viscosity difference. Previous density-based AICDs have been rejected because buoyancy forces are often overwhelmed by fluid forces and because they needed to be oriented with respect to Earth's gravity. Density-AICDs use floats that are buoyant in water and sink in oil to control fluid production. The key to the new density-AICD is that that the floats are housed in a spinning centrifugal rotor. This spinning density selector creates centripetal forces that multiply the buoyancy force thereby magnifying the difference between oil and water. The magnified buoyancy forces are stronger than fluid friction forces and are sufficient to overcome suction forces on the valve seats. The centripetal acceleration creates an artificial gravity that is much larger than Earth's gravity, eliminating the need to orient the density-AICD downhole. The density selector is spun by the production fluid so that larger centripetal forces are created in response to a larger drawdown. The result is a density-AICD that will operate in real-world conditions, especially in the light oil formations of the Middle East. The performance of this novel density-AICD has been measured in flow loop testing and demonstrated in computer modeling. The flow loop testing achieved substantial water restriction and continued oil flow using oil and water with identical viscosities.

Publisher

SPE

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3