Forced Oil-Water Emulsion to Tackle Flow Assurance Issues in Heavy Oil Reservoir

Author:

Sajjad Farasdaq Muchibus1,Nugroho Wisnu Agus1,Chandra Steven2,Panaiputra Harris Grenaldi1,Nurlita Dian1,Towidjojo Reynaldo Billy2,Rahmawati Silvya Dewi2,Vico Hendro1,Wirawan Alvin1

Affiliation:

1. PT Pertamina Hulu Energi

2. Institut Teknologi Bandung

Abstract

Abstract Flow assurance has been a major problem in the development of a heavy oil field. It is not common that this issue has a multiplier effect from reservoir up to processing facilities, reducing productivity and in turn, increasing financial burden. Many of oil and gas operators in Indonesia have spent a lot of capital to deal with managing complex reservoirs with severe flow assurance issues, namely high water cut, excessively viscous oil and its effect on fluid flow. Y Field has been produced for thirty years and currently produces 2800 BOPD with fluctuations in flow rate. This field is characterized by extreme oil viscosity, up to 4000 cP at surface condition, which leads to high backpressure while delivering fluid to pipeline system. This viscous oil creates unstable flow, causing unfavorable flow-pattern; slug flow to annular flow. As a result, the water and oil are not coherently arrived at the same time at receiving facilities, leading to highly frequent occurrence of oil-water slug phenomenon. Chemical injection efforts do not show significant impact toward the production, therefore an alternative approach is generated to address the production problem. A new approach is presented in this publication to reduce the occurrence of severe slugging phenomenon by performing water blending scheme during fluid transportation. The idea is based on a hypothesis that performing forced emulsion of brine and heavy oil promotes dispersion of oil into small droplets which can be carried out by injected water under relatively low velocity of fluid flow. This idea is quite interesting since it is simple to perform, by only directing produced water from water zones below hydrocarbon bearing zone or by reactivating high water cut wells to the pipeline system. In order to increase the efficiency of forced emulsion process, we approximated the minimum acceptable water cut to develop sufficient emulsion viscosity to prevent exceeding backpressure. Based on simulation using commercial software, the result shows that water cut should be maintained above 80%. A lower water cut will lead to high backpressure which will delay arrival time of oil for more than one day behind the water arrival. This result infers that one of the available solutions to handle severe slugging is by modifying water cut profile during hydrocarbon transportation. This approach gives a new insight into marginal field optimization.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3