Petrophysical Evaluation for Enhancing Hydraulic Stimulation in Horizontal Shale Gas Wells

Author:

Buller Dan1,Hughes Simon1,Market Jennifer1,Petre Erik1,Spain David2,Odumosu Tobi2

Affiliation:

1. Halliburton

2. BP America

Abstract

AbstractThe economic recovery of gas from shale reservoirs requires optimal multistage hydraulic stimulation in horizontal wells. Important parameters to consider in shale-gas evaluation include gas-filled porosity and total organic content. Mechanical rock properties, including a calculated brittleness index, along with mineralogy, are also required to target and design individual horizontal fracture stages in the best zones. This type of formation evaluation in horizontal wells requires careful correlation and calibration to petrophysical measurements obtained in either vertical pilot holes or direct offset wells. This paper presents a comprehensive approach to the evaluation of an unconventional resource play drilled in the Haynesville Shale in east Texas.Using openhole and logging-while-drilling (LWD) logs, conventional core analysis, and a chemostratigraphy analysis of drill cuttings, a shale analysis linking mineralogy, free gas, effective porosity, a shale brittleness index, and a clay linked transverse anisotropy is verified on separate vertical and horizontal control wells. Beyond that, pulsed neutron spectroscopy logs were run to develop a cased-hole evaluation solution from N-N (neural network) modeling that could replicate openhole wireline or LWD logs, and chemostratigraphy mineralogy results.Subsequently, two horizontal wells were logged with LWD tools and afterward, through casing, using the pulsed neutron log and neural network calibration. Fracture stages for the logged horizontal wells were then evaluated vs. the log data. Generally, lower normalized treating pressures per fracture stage are noted where lower clay volumes exhibit less transverse anisotropy and a higher calculated shale brittleness index. Radioactive tracer and production log data also confirm lower amounts of gas production from zones that are apparently fractured, but are more ductile and clay-rich.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3