Speeding Up Compositional Reservoir Simulation through an Efficient Implementation of Phase Equilibrium Calculation

Author:

Belkadi Abdelkrim1,Yan Wei1,Moggia Elsa2,Michelsen Michael L.1,Stenby Erling H.1,Aavatsmark Ivar2,Vignati Emanuele3

Affiliation:

1. Technical University of Denmark

2. University of Bergen

3. Alberto Cominelli, Eni

Abstract

Abstract Compositional reservoir simulations are widely used to simulate reservoir processes with strong compositional effects, such as gas injection. The equations of state (EoS) based phase equilibrium calculation is a time consuming part in this type of simulations. The phase equilibrium problem can be either decoupled from or coupled with the transport problem. In the former case, flash calculation is required, which consists of stability analysis and subsequent phase split calculation; in the latter case, no explicit phase split calculation is required but efficient stability analysis and optimized coding of the basic thermodynamic subroutines are still crucial to the overall speed. This work tries to provide a comprehensive strategy to increase the speed for compositional simulation. This strategy begins with the coding of the basic thermodynamic properties, including the derivatives of fugacities with respect to molar numbers. Then, in the algorithms for stability analysis and phase split calculation, successive substitution with acceleration and minimization-based second-order methods are combined to gain both robustness and efficiency. For compositional simulations, the results from previous simulation steps provide the possibility to skip stability analysis by the shadow region method in the single phase regions. The approach was implemented in the general purpose research simulator (GPRS) developed by Stanford University. GPRS is a modular, state of the art reservoir simulation and its architecture makes the implementation and evaluation of new ideas and concepts easy. Tests on several 2-D and 3-D gas injection examples indicate that with an efficient implementation of the thermodynamic package and the conventional stability analysis algorithm, the speed can be increased by several folds. Application of the shadow region method to skip stability analysis can further cut the phase equilibrium calculation time.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3