Snap-Off of Oil Droplets in Water-Wet Pores

Author:

Roof J.G.1

Affiliation:

1. Shell Development Co.

Abstract

Abstract When oil emerges from a water-wet constriction into a water-filled pore, the interfacial forces are such that a leading portion of the oil may separate into a droplet (snap off). Theory indicates that for a given shape of constriction, there is a minimum size to the protruding portion of the oil that permits snap-off. If the oil/solid contact angle is zero and if the constriction has the shape of the throat of a tore (a doughnut hole), the oil must protrude for a distance of at least seven times the throat radius before snap-off can occur. Experiments were performed in approximately toric constrictions constructed of glass. Liquids used were a dyed mineral oil and a water-ethanol mixture adjusted to the same density as the mineral oil to avoid gravitational effects. Within the limitations imposed by visual distortions through the glass and the liquids, the observations appear to be in accord with the theoretical predictions. Introduction Production of oil from a reservoir involves flow of oil through a porous medium that also contains water. Because of the small size of the pores in the reservoir rock or sand capillary forces at the oil-water interface are of considerable importance in determining the nature of the flow through the pores. This report deals with one aspect of such pores. This report deals with one aspect of such How, determining the conditions that must be met in order that the oil emerging from a water-wet constriction will separate (snap off or pinch off) into a droplet in the larger parts of the channel. By applying the fundamental equation of capillarity to oil flowing through certain geometrically describable water-wet constrictions we can calculate the minimum size of the protruding body of oil that will permit snap-off of the oil to give a separate droplet. The theoretical treatment can be checked, at least semiquantitatively, by observations on dyed mineral oil flowing through glass pores previously filled with a water-alcohol mixture. This mixture should be adjusted to give be same density as that of the mineral oil in order to eliminate gravitational effects, which can be large relative to capillary effects in constrictions having an internal diameter of about 2 mm. THEORETICAL In a report on pore structure and fluid distribution, Pickell, Swanson and Hickman included a discussion Pickell, Swanson and Hickman included a discussion on some aspects of snap-off of oil into droplets as that nonwetting phase moves through constrictions in pores. The discussion may be extended to indicate some pores. The discussion may be extended to indicate some of the physical conditions that must be met if snap-off is to occur. Pickell et al considered a single pore to be generally quite angular in cross-section, as shown in Fig. 1a (after Fig. 3 of their report). However, let us first consider an isolated constriction that is circular in cross-section and then comment on a less ideal pore. DOUGHNUT-HOLE PORE Let the constriction have the shape of the hole within a tore, i.e., the hole through a doughnut,* as in Fig. 1b. This pore, initially water-filled, now has oil of the same density being forced into it. As the nose of the oil and the wall of the pore, so that thin layer of water is imagined as being retained between the oil and the wall of the pore, so that the contact angle between rock and oil remains zero. The oil is moving so slowly that the pressure (or, more properly, the head) is essentially equal at all points within the oil phase. A longitudinal section of a toric pore is indicated in Fig. 1c. Pertinent lengths are shown in Fig. 1d, where Pertinent lengths are shown in Fig. 1d, where these lengths are given relative to the radius of the throat (this word being used to indicate the narrowest part of the constriction). SPEJ P. 85

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 370 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3