Optimizing Drilling Parameters Using a Random Forests ROP Model in the Permian Basin

Author:

Nasir Ehsaan1,Rickabaugh Caleb1

Affiliation:

1. BHGE

Abstract

Abstract A random forests Rate Of Penetration (ROP) model, along with heat maps, was used to challenge and optimize the drilling parameters for new wells based on the surface drilling data acquired from previous wells. The goal was to analyze the data to observe surface drilling parameter trends aiding in increased bit life and reduced bit wear resulting in maximizing ROP and minimizing Mechanical Specific Energy (MSE). The four key variables investigated were weight on bit (WOB), surface RPM, mud flowrate and the drilling formation. Surface drilling data for this study was utilized from wells, within a 20 mile radius, where the same bit and motor drilled the entire vertical interval to TD. Heat maps and ROP models (created using support vector regression, random forests and boosted trees) were employed for this purpose. Data was cleaned up using cutoffs (from the minimum and maximum values expected by the drilling engineer) and plotting data distributions. K-fold Cross validation was applied when generating the ROP models. The aim was to focus on the optimization of drilling parameters using surface data only, due to the lack of sub-surface data availability. Using the methodology developed, the drilling parameters could be optimized to extend bit life and reduce bit trips by maximizing ROP and minimizing MSE. The random forests ROP model was found to be the best with a 12% mean absolute error. The error could have been reduced further by introducing additional variables into the model that capture the changes in formation mechanical properties, downhole parameters and vibrations. This paper only focuses on learnings from surface drilling data. After a certain threshold (which differed for the different formations encountered) an increase in WOB didn' t result in a corresponding increase in ROP. Moreover, most of the ROP gains were observed to be in the shallower formations drilled. For the deeper formations, it was more beneficial to reduce MSE as the ROP was relatively lower no matter what the parameters. This study used random forests, support vector regression and boosted tree methods to generate ROP models instead of neural networks. Even though neural networks are the most extensive, random forests are generally faster and were the most accurate of the three aforementioned methods used. The less time and computational resources required when compared to neural networks made random forests an attractive option for such a study.

Publisher

SPE

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3