Modeling of Pressure and Solution Gas for Chemical Floods

Author:

Roshanfekr M..1,Johns R.T.. T.2,Delshad M..1,Pope G.A.. A.1

Affiliation:

1. University of Texas at Austin

2. Pennsylvania State University

Abstract

Summary The goal of surfactant/polymer (SP) flooding is to reduce interfacial tension (IFT) between oil and water so that residual oil is mobilized and high recovery is achieved. The optimal salinity and optimal solubilization ratios that correspond to ultralow IFT have recently been shown, in some cases, to be a strong function of the methane mole fraction in the oil at reservoir pressure. We incorporate a recently developed methodology to determine the optimal salinity and solubilization ratio at reservoir pressure into a chemical-flooding simulator (UTCHEM). The proposed method determines the optimal conditions on the basis of density estimates by use of a cubic equation of state (EOS) and measured phase-behavior data at atmospheric pressure. The microemulsion phase-behavior (Winsor I, II, and III) are adjusted on the basis of this predicted optimal salinity and solubilization ratio in the simulator. Parameters for the surfactant phase-behavior equation are modified to account for these changes, and the trend in the equivalent alkane carbon number (EACN) is automatically adjusted for pressure and methane content in each simulation gridblock. We use phase-behavior data from several potential SP floods to demonstrate the new implementation. The implementation of the new phase-behavior model into a chemical-flooding simulator allows for a better design of SP floods and more-accurate estimations of oil recovery. The new approach could also be used to handle free gas that may form in the reservoir; however, the SP-flood simulation when free gas is present is not the focus of this paper. We show that not accounting for the phase-behavior changes that occur when methane is present at reservoir pressure can greatly affect the oil recovery of SP floods. Improper design of an SP flood can lead to production of more oil as a microemulsion phase than as an oil bank. This paper describes the procedure to implement the effect of pressure and solution gas on microemulsion phase behavior in a chemical-flooding simulator, which requires the phase-behavior data measured at atmospheric pressure.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3