Drilling Through Data: Automated Kick Detection Using Data Mining

Author:

Alouhali Raed1,Aljubran Mohammad1,Gharbi Salem1,Al-yami Abdullah1

Affiliation:

1. Saudi Aramco

Abstract

Abstract This paper details using advancement in data analytics and the huge amount of data generated while drilling to develop an automated system to detect kicks while drilling. Detecting kicks in early stages gives the crew additional time to control it resulting in a safer and more efficient drilling operation. Five models were developed and evaluated to optimize kick detection they are: Decision Tree, K-Nearest Neighbor (KNN), Sequential Minimal Optimization (SMO) Algorithm, Artificial Neural Network (ANN), and Bayesian Network. The models were trained to detect kicks based on actual kick cases. The models are predicting kicks using only surface parameters such as: pressure gauges, flow meters, hook load, rate of penetration, torque, pump rate, and weight on bit. The performance of the five models is then evaluated and compared. Best two models were Decision Tree and K-Nearest Neighbor.

Publisher

SPE

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3