The Future of Nonmetallic Composite Materials in Upstream Applications

Author:

Badeghaish Wael1,Noui-Mehidi Mohamed1,Salazar Oscar1

Affiliation:

1. Saudi Aramco

Abstract

Abstract Corrosion in oil and gas operations is generally caused by water, carbon dioxide (CO2) and hydrogen sulfide (H2S), and can be aggravated in downhole applications where high temperatures combination with H2S introduce other challenges related to corrosion and iron sulfide (FeS) scale formation. The repair costs from corrosion attacks are very high and associated failures have effects on plant production rates and process integrity. To overcome this existing problem in upstream, nonmetallic composite materials were introduced for drilling, tubular and completions in high risk, corrosive environments. The goal being to increase the well life cycle and minimize the effect of corrosion, scale and friction in carbon steel tubulars. The new proposed materials have light weight, high strength, and superior fatigue resistance in addition to an outstanding corrosion resistance that is able to surpass many metallic materials. The economic analysis shows that utilization of nonmetallic tubulars and internal linings will yield substantial life cycle cost saving per well mainly due to the elimination of workover operations. However, with these advantages, composite materials pose several challenges such as single source provision, high initial cost of raw materials, the manufacturing process and the limitation of standards. As results, the polymer and composite solutions for upstream oil and gas are still very limited even in targeting low risk applications such as low temperature and pressure scenarios. Therefore, research & development (R&D) efforts are ongoing to increase the operation envelope and introduce cost effective raw materials for high-pressure, high temperature (HPHT) subsurface applications. The present paper highlights practical examples of nonmetallic materials selection and qualification for upstream water injection/producer and hydrocarbon wells. Several future NM applications in upstream will be summarized. Challenges and R&D forward strategies are presented in order to expand the operation envelope of current materials and increase NM deployment to more complex wells, i.e., extended reach drilling (ERD).

Publisher

SPE

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3