An Improved Methodology for Simulating Oil Recovery by Carbonated Water Injection: Impact of Compositional Changes

Author:

Al Mesmari Ali1,Mahzari Pedram1,Sohrabi Mehran1

Affiliation:

1. Centre for Enhanced Oil Recovery and CO2 Solutions, Institute of Petroleum Engineering, Heriot-Watt University

Abstract

Abstract Enhanced Oil Recovery by carbonated water injection (CWI) has recently attracted significant attention. The main advantage of CWI, compared to conventional CO2 flood, is that it requires small amount of CO2 and it can be readily applied to oil fields with on-going or planned waterflood. The challenge with CWI is numerical simulation of the complex compositional changes that take place as a consequence of the transfer of CO2 from CO2-enriched (carbonated) water to crude oil under reservoir conditions. We have recently reported that these compositional changes result in the formation of a new gaseous phase within the oil and become the dominant mechanism controlling the performance of CWI. In this investigation, utilising the results of novel direct visualisation experiments, a new and improved methodology for simulating the performance of CWI has been successfully developed that is capable of reproducing the physical processes observed in our micromodel and coreflood experiments. First, the parameters controlling the phase behaviour of crude oil and carbonated water were identified and an equation-of-state (EOS) was tuned to simulate the partitioning of CO2 between the aqueous phase and the crude oil. Furthermore, to properly account for the formation of the new phase during CWI, three-phase flow functions and kr were utilised for simulation of flow. Using an integrated automatic-history matching algorithm, the proposed methodology is then employed to examine the capability of commercial reservoir simulators to couple mass transfer and multi-phase flow during CWI. For this, the results of a series of consistent coreflood experiments were used where carbonated water was injected in secondary and tertiary modes. The results of the history-matching exercises demonstrated that, to properly capture the underlying mechanisms of EOR by CWI, the phase behaviour and three-phase flow functions should be coupled in numerical simulation of the process. The results also revealed that the binary interaction coefficients between oil components and CO2 would control the extent of the gaseous-phase formation. Also, a relatively high value for critical gas saturation was obtained to history match the coreflood experiments, which was in agreement with the results of the direct visualisations experiments. Moreover, a variety of three-phase oil relative permeability functions were considered to replicate the movement of the gaseous-phase, which would be dictated by reconnection of the oil ganglia. The new phase formation outperforms other oil recovery mechanisms such as reduction of oil viscosity and oil swelling. The results of the study help improve the accuracy of the numerical simulation of the oil recovery processes involving CO2 and carbonated water injection. This will in turn improve the quality of our reservoir performance predictions and the reliability of our economic calculations of these enhanced oil recovery techniques.

Publisher

SPE

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3