Integrated Fracture Characterization of Thamama Reservoirs in Abu Dhabi Oil Field, United Arab Emirates

Author:

Ali Mohammed Y.1,Bouchaala Fateh2,Bouzidi Youcef2,Takam Takougang Eric M.3,Mohamed Aala A. I.2,Sultan Akmal2

Affiliation:

1. Khalifa University of Science and Technology (Corresponding author; email: mohammed.ali@ku.ac.ae)

2. Khalifa University of Science and Technology

3. University of Buea

Abstract

Summary Volumetric maximum curvature attribute computed from 3D ocean bottom cable (OBC) seismic data, production logging tool (PLT), inorganic chemical tracer data, and fractures observed from core and full-bore formation microimager (FMI) logs were integrated to characterize fractured carbonate reservoirs of an offshore oil field in Abu Dhabi, United Arab Emirates (UAE). The extracted maximum curvature anomalies are predominantly orientated in NNE-SSW and NE-SW, a trend perpendicular to the dominant fault direction in the oil field and similar to the dominant strike directions of fractures measured from core data and FMI logs. Because the fracture strike directions of well data mimic the strike directions of curvature anomalies at corresponding reservoir levels, we interpreted the maximum curvature anomalies to represent dilatational fractured zones or fracture corridors. Integration of dynamic data, such as PLT and chemical tracers, and maximum curvature anomalies demonstrate that the inferred fracture zones can determine water breakthroughs as well as inter- and intrareservoir communications. As a result, this study highlights possible fracture zones and their internal architecture, as well as their potential flow capabilities. These results play a key role in reservoir management and monitoring of water movement through structural pathways.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3