A Comprehensive Modeling Analysis of Borehole Stability and Production-Liner Deformation for Inclined/Horizontal Wells Completed in a Highly Compacting Chalk Formation

Author:

Furui K..1,Fuh G.-F.. -F.1,Abdelmalek N..1,Morita N..2

Affiliation:

1. ConocoPhillips

2. Waseda University

Abstract

Summary Numerous casing and production-liner deformation/failure problems have been reported in high-porosity chalk formations in both the overburden and the reservoir sections, causing costly operation problems that prevent workovers and recompletions. This paper presents the results of studies performed to investigate stability of an openhole, cemented liner and uncemented-liner completions in a highly compacting chalk formation. The effects of critical cavity dimensions caused by various acid-stimulation techniques were also investigated. On the basis of the review of historical caliper-survey data, we ascertain that axial-compression collapse is a major liner-deformation mechanism in the reservoir zones. Axial-compression collapse has been found in both low-angle wells (also in buildup sections of horizontal wells) and horizontal laterals. The casing deformation in low-angle sections is a result of reservoir compaction (i.e., change in the vertical formation strain), while the deformation in horizontal sections is primarily induced by increased axial loading because of cavity deformation. The current completion practice using cluster perforations and high-volume acid treatments causes vertically enlarged cavities, resulting in poor radial constraint. A series of laboratory triaxial tests was performed on selected reservoir chalk samples to measure the stress/strain and failure behavior of the chalk formation considering a wide range of porosity and water saturation and different levels of confining pressures. Using the chalk-failure criteria and constitutive relations developed from the analysis of laboratory triaxial-compression-test data, a 3D nonlinear poroelastic/plastic finite-element-method (FEM) model was developed for the openhole stability analysis. The simulation results show that the abnormally high ductility of chalks after pore collapse around a borehole could actually enhance borehole stability, with a magnitude beyond expectation. In this study, analytical and numerical models are also developed for evaluating cavity-induced axial-compression collapse of production liners. Model results indicate that the risk of the cavity-induced axial-compression collapse substantially increases for short perforated intervals stimulated with large acid treatments. However, increasing the perforation-interval lengths along the entire liner axis results in more-uniform acid distribution and will greatly reduce the chance of axial-compression collapse caused by localized cavity deformation. On the basis of these analysis results, key completion design criteria and stimulation strategies were developed for wells completed in highly compacting chalk reservoirs to reduce risk of casing and liner mechanical problems.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3