A Comparison of Polymer Flooding With In-Depth Profile Modification

Author:

Seright Randall1,Zhang Guoyin1,Akanni Olatokunbo1,Wang Dongmei2

Affiliation:

1. New Mexico Tech

2. University of North Dakota

Abstract

Summary For stratified reservoirs with free crossflow and where fractures do not cause severe channeling, improved sweep is often needed after water breakthrough. For moderately viscous oils, polymer flooding is an option for this type of reservoir. However, in recent years, an in-depth profile-modification method has been commercialized in which a block is placed in the high-permeability zone(s). This sophisticated idea requires that (1) the blocking agent have a low viscosity (ideally a unit-mobility displacement) during placement, that (2) the rear of the blocking-agent bank in the high-permeability zone(s) outrun the front of the blocking-agent bank in adjacent less-permeable zones, and that (3) an effective block to flow form at the appropriate location in the high-permeability zone(s). Achieving these objectives is challenging but has been accomplished in at least one field test. This paper investigates when this in-depth profile-modification process is a superior choice over conventional polymer flooding. Using simulation and analytical studies, we examined oil-recovery efficiency for the two processes as a function of (1) permeability contrast, (2) relative zone thickness, (3) oil viscosity, (4) polymer-solution viscosity, (5) polymer- or blocking-agent-bank size, and (6) relative costs for polymer vs. blocking agent. The results reveal that in-depth profile modification is most appropriate for high permeability contrasts (e.g., 10:1), high thickness ratios (e.g., less-permeable zones being 10 times thicker than high-permeability zones), and relatively low oil viscosities. Because of the high cost of the blocking agent relative to conventional polymers, economics favors small blocking-agent-bank sizes (e.g., 5% of the pore volume in the high-permeability layer). Even though short-term economics may favor in-depth profile modification, ultimate recovery may be considerably less than from a traditional polymer flood.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3