Performance Evaluation of CO2 Huff-n-puff Processes in Tight Oil Formations

Author:

Song Chengyao1,Yang Daoyong1

Affiliation:

1. University of Regina

Abstract

Abstract Techniques have been developed to experimentally and numerically evaluate performance of CO2 huff-n-puff processes for unlocking resources from tight oil formations. Experimentally, core samples collected from a tight formation with a permeability range of 0.27-0.83 mD are used to conduct a series of coreflooding experiments. The performance of four recovery schemes, i.e., waterflooding, immiscible CO2 huff-n-puff, near-miscible CO2 huff-n-puff, and miscible CO2 huff-n-puff processes, is evaluated with the tight core samples. The waterflooding process leads to a higher oil recovery factor in comparison with the immiscible CO2 huff-n-puff process, while both the near-miscible and miscible CO2 huff-n-puff processes result in higher recovery efficiency compared to that of waterflooding. Theoretically, numerical simulation is performed to match the experimental measurements obtained in the different recovery schemes. There exists a generally good agreement between the experimental measurements and simulated results. The tuned numerical model is then employed to optimize the injection pressure and soaking time during CO2 huff-n-puff processes. It is found that the optimum injection pressure of the CO2 huff-n-puff process can be set around the minimum miscibility pressure (MMP) between crude oil and CO2, while the soaking time can be optimized for maximizing oil recovery.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3