Numerical Study on the Impact of Spiral Tortuous Hole on Cuttings Removal in Horizontal Wells

Author:

Khaled Mohamed Shafik1,Ferroudji Hicham2,Rahman Mohammad Azizur3,Galal Ibrahim Hasan3,Hasan A. Rashid4

Affiliation:

1. Texas A&M University (Corresponding author; email: mohamed.shafikkhaled@gmail.com)

2. Boumerdes University

3. Texas A&M University at Qatar

4. Texas A&M University

Abstract

Summary Horizontal wells are designed to have smooth (straight), curved, and lateral sections. However, the actual drilled path usually suffers from unwanted undulations from the planned well trajectory known as wellbore tortuosity. Wellbore tortuosity can slow the drilling penetration rate, aggravate drillstring vibration and buckling, complicate the casing and cement job, and lead to inaccurate wellbore position. This paper presents a validated computational fluid dynamics (CFD) model to investigate the impact of wellbore tortuosity on hole cleaning. The Eulerian-Eulerian approach is used to simulate solid-liquid laminar flow in annular geometry using polyhedral mesh. Then, the impact of wellbore tortuosity on cuttings accumulation, annular pressure loss, and fluid velocity was investigated and compared with the flow behavior in a straight horizontal well. A parametric analysis of spiral period length, spiral amplitude, drillstring rotation, flow rate, annular eccentricity, drilling rate of penetration (ROP), and cuttings size was conducted to assess their influence on cuttings transport in spiral tortuous holes and their relative magnitude to other design or operating factors. Simulation results show that polyhedral mesh is an optimum meshing technique for spiral profile geometry. Wellbore tortuosity aggravates hole cleaning in lateral sections based on the length of the spiral period and/or the spiral amplitude. Reduction in cuttings velocity was observed in the top part of the spiral geometry (crest), causing large deposition of cuttings in this area compared to the spiral lower part (trough). Drillstring rotation from 0 to 200 rev/min is the critical range for efficient hole cleaning in spiral geometry. Cuttings size can improve cuttings accumulation if the particle size is larger than the viscous layer located near the bed velocity profile. The drilling ROP and annular eccentricity aggravate cuttings accumulation and bed deposition in a spiral hole, similar to what is normally observed in straight horizontal wells.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3