Direct Contact Steam Generation Reduces Carbon Intensity

Author:

Kay Brian1

Affiliation:

1. General Energy Recovery Inc.

Abstract

Abstract Steam for enhanced oil recovery is typically generated using Once-Through-Steam-Generators (OTSG) produced at large central facilities with the steam then pipelined to each injection well. As much as 50% of the energy can be lost before it reaches the well bore with the combustion emissions vented to atmosphere. Direct Contact Steam Generation (DCSG) injects both steam and hot combustion flue gases into the reservoir. Oil production is increased by reducing oil viscosity through heat while repressuring the reservoir with flue gases and improving miscibility with the CO2 that remains in the reservoir. This combination greatly improves the Steam-Oil-Ratio (SOR) for increased oil recovery as well as delivering environmental benefits related to reduced water requirements and lower emissions resulting in a much lower carbon intensity. DCSG water requirements are 11% less than OTSG methods as water is created by the combustion process, this water is then injected into the reservoir rather than lost to the atmosphere. As most of the DCSG process emissions are indirect, emissions can be further reduced by as much as 30% with the use of low carbon intensity grid electricity for compression. Pilot results show that DCSG used less water, with 70% of the CO2 retained in the formation. Lower SOR and CO2 retained in the reservoir demonstrates lower carbon intensity relative to OTSG. DCSG offers heavy oil operators a novel, viable, method to economically extract currently uncoverable reservoirs at a lower carbon intensity than traditional methods.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3