Directional Permeability of Heterogeneous Anisotropic Porous Media

Author:

Greenkorn R.A.1,Johnson C.R.1,Shallenberger L.K.1

Affiliation:

1. Jersey Production Research Co.

Abstract

Abstract This paper describes a study, based on core data, of the directional permeability of a sandstone reservoir. Directional air permeabilities are explained and correlated with lithology by the tensor theory of permeability, which is extended to the more general case of heterogeneous anisotropic porous media. In this case, the permeability tensor is made up of two components:anisotropy (variation around a point) which correlates with bedding, andheterogeneity (variation from point- to-point) which correlates with grain size. Introduction Previous studies of directional permeability, have concerned themselves only with anisotropy at a point, rather than with both point-to-point differences and local anisotropies. In this paper, we present the existing tensor theory of permeability for anisotropic porous media and then extend it to the more general case of heterogeneous anisotropic porous media. The laboratory measurements of directional permeability are explained in view of this extended theory and the data are discussed in terms of the lithologic factors that correlate with it. The results show what the heterogeneity and anisotropy of the reservoir element are, and that the directional permeability correlates with lithology. Data used in this paper are measurements of air permeability in eight directions, spaced at 45 intervals, on 142 2-in. vertical plugs from 30 cores. The core data are meaningful in terms of directional permeability because the cores were oriented to within 45 during drilling and coring. Although we initially thought that only 60 per cent of the core material was reliable, subsequent study showed that almost all of it was reliably oriented. After determining the air permeabilities, the data were reduced to three independent variables for each plug: the major and minor permeability axes, and the direction of the major axis. These were obtained by converting the permeability data to the reciprocal square root of permeability and fitting the transformed data with ellipses according to the tensor theory of permeability. The point-to-point areal variation of the minimum permeability axis is related to grain size. The direction of the permeability axes, where the major axis exceeds the minor axis by at least 5 per cent (measured variation is about 4 per cent), correlates with the bedding. The permeability tensor used in this study must be considered as the sum of a scalar and a tensor, with the scalar being the minor axis permeability as a function of position, and the tensor the directional effect, which is additive permeability over the minor axis. In this case, the point-to-point variation or heterogeneity (minor axis) is substantially larger than the variation at a point or anisotropy. It may be important that this separation of "directional permeabilities" be recognized when considering migration of fluids due to permeability variation. Local migration may be due to anisotropy and point-to-point migration may be due to heterogeneity, but the direction and magnitude of these may not be the same. Furthermore, in truly heterogeneous systems, one would expect that anisotropy would be the smaller of the two effects. THEORY TENSOR THEORY OF PERMEABILITY FOR ANISOTROPIC POROUS MEDIA Darcy's law for flow in porous media in its usual form is where q is the flow rate vector, k is the permeability, mu is the viscosity, V is the vector differential operator, and p is the pressure. SPEJ P. 124ˆ

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3