Application of a Torsional Impact Hammer to Improve Drilling Efficiency

Author:

Deen Aron1,Wedel Ryan1,Nayan Abhijeet1,Mathison Shaun1,Hightower Greg1

Affiliation:

1. Ulterra Drilling Technologies

Abstract

AbstractSeveral phenomena that negatively affect drilling efficiency are still commonly observed in practice. These phenomena can often be linked directly to the high torque required for a PDC bit to aggressively shear formation, and the difficulty of effectively transmitting such torque consistently to the bit. In highly transitional or conglomerate formations, the depth of cut and subsequent torque required for the bit to continuously shear formation fluctuates greatly, leading to the buildup and release of torsional energy in the drill string, commonly known as stick/slip. High speeds and vibration during the slip phase, combined with the heterogeneous and/or hard nature of the environment can cause damage to PDC cutters and other drill string components, resulting in reduced bit and tool life as well as poor rate of penetration (ROP).A proprietary torsional impact hammer was tested in applications in Western Oklahoma and in the Southeast Arabian Peninsula where drilling efficiency was believed to be much lower than the theoretical limit. These applications were identified by high cost per foot drilling with roller cone and diamond impregnated bits, as well as known and expected high vibrations accompanying unsuccessful and inconsistent PDC testing. The case studies reveal the strengths and weaknesses of applying such a solution, and introduce a discussion on selection of applications where this solution is advisable. The balance of this paper will also describe how this solution has reduced drilling costs and changed the economics of drilling applications in Western Oklahoma and the Southeastern Arabian Peninsula over the course of the cases studied.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3