Impact of Polymer EOR and Salinity on Barium Sulphate Scale Risk

Author:

Al Kalbani M. M.1,Mackay E. J.1,Sorbie K. S.1,Nghiem L..1

Affiliation:

1. Heriot-Watt University

Abstract

Abstract Barium Sulphate (BaSO4) scale deposition is a serious problem encountered in oilfield operations. The precipitation of BaSO4 scale has been studied mainly for fields under water flooding. On the other hand, polymer flooding is a mature Enhanced Oil Recovery (EOR) method that has been applied successfully in many fields. This study investigates the effect of polymer flooding and salinity variations on oil Recovery Factor (RF) and on brine mixing and BaSO4 precipitation in porous media and the scale risk in producers. Reservoir simulation has been used to carry out the study. We have performed simulations using a reactive transport simulator and heterogeneous 2D areal and vertical models and a field scale 3D model. Data from literature have been utilized to define parameters that control polymer viscosity, polymer adsorption and barium (Ba2+) and sulphate (SO42-) concentrations. We have also studied the effect of injecting a low salinity water as the make-up brine for the polymer slug to see its impact on oil recovery and BaSO4 precipitation. The study shows that the injection of a viscous polymer slug reduces the mixing between injected and formation brines and so reduces the amount of BaSO4 deposition in the reservoir compared to a normal water flood. This reduction is not large and its effect on reservoir permeability is marginal. However, importantly the viscous polymer delays the breakthrough of injected water and hence the precipitation of BaSO4 at the wellbore. Including the effect of polymer adsorption makes the polymer front move slower than the SO42- front, and this accelerates BaSO4 precipitation at the wellbore and increases the total precipitation compared to the case without adsorption. A low salinity polymer slug, which contains low SO42- concentration, improves polymer viscosity, which enhances oil recovery, and reduces and delays the amount of BaSO4 deposition in the formation and in the producers. The behaviour of brine mixing is different under polymer flooding compared to normal water flooding. This work shows for the first time that this impacts the amount of BaSO4 scale that precipitates in the reservoir, and thus the timing and amount of potential scale deposition in the wellbore.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3