Subspace Ensemble Randomized Maximum Likelihood with Local Analysis for Time-Lapse-Seismic-Data Assimilation

Author:

Silva Neto Gilson Moura1,Soares Ricardo Vasconcellos2,Evensen Geir3,Davolio Alessandra4,Schiozer Denis José4

Affiliation:

1. Petrobras, University of Campinas, and NORCE Norwegian Research Centre

2. NORCE Norwegian Research Centre, University of Bergen

3. NORCE Norwegian Research Centre and Nansen Environmental and Remote Sensing Center

4. University of Campinas

Abstract

Summary Time-lapse-seismic-data assimilation has been drawing the reservoir-engineering community's attention over the past few years. One of the advantages of including this kind of data to improve the reservoir-flow models is that it provides complementary information compared with the wells' production data. Ensemble-based methods are some of the standard tools used to calibrate reservoir models using time-lapse seismic data. One of the drawbacks of assimilating time-lapse seismic data involves the large data sets, mainly for large reservoir models. This situation leads to high-dimensional problems that demand significant computational resources to process and store the matrices when using conventional and straightforward methods. Another known issue associated with the ensemble-based methods is the limited ensemble sizes, which cause spurious correlations between the data and the parameters and limit the degrees of freedom. In this work, we propose a data-assimilation scheme using an efficient implementation of the subspace ensemble randomized maximum likelihood (SEnRML) method with local analysis. This method reduces the computational requirements for assimilating large data sets because the number of operations scales linearly with the number of observed data points. Furthermore, by implementing it with local analysis, we reduce the memory requirements at each update step and mitigate the effects of the limited ensemble sizes. We test two local analysis approaches: one distance-based approach and one correlation-based approach. We apply these implementations to two synthetic time-lapse-seismic-data-assimilation cases, one 2D example, and one field-scale application that mimics some of the real-field challenges. We compare the results with reference solutions and with the known ensemble smoother with multiple data assimilation (ES-MDA) using Kalman gain distance-based localization. The results show that our method can efficiently assimilate time-lapse seismic data, leading to updated models that are comparable with other straightforward methods. The correlation-based local analysis approach provided results similar to the distance-based approach, with the advantage that the former can be applied to data and parameters that do not have specific spatial positions.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3