Pressure Variations Inside the Hydraulic Fracture and Their Impact on Fracture Propagation, Conductivity, and Screenout

Author:

Daneshy A. Ali1

Affiliation:

1. Daneshy Consultants Intl.

Abstract

Summary Field measurements of fluid pressure inside hydraulic fractures have shown rapid pressure declines along the fracture length. The consequence of this pressure profile is rapidly tapering fracture width. This means that a disproportionate volume of fluid and proppant injected inside hydraulic fractures remains near the wellbore, thus creating excessive near-wellbore and substantially less far-field fracture conductivity. This explains why history matching of oil well production figures yields much lower effective fracture lengths than when the same exercise is performed for gas wells, as oil wells require higher fracture flow capacity because of their higher permeability. The rapid tapering of the fracture width also restricts the movement of the proppant inside the fracture, causing its accumulation near the wellbore. As the treatment progresses, and if sufficient proppant volume has been injected inside the fracture, the near-wellbore segment of the fracture can begin to fill with proppant, thus reducing the open width available for further movement of the fluid. Essentially, accumulation of proppant near the wellbore reduces the fracture width available for fluid flow, which then results in higher frictional pressure losses inside the fracture, further skewing the pressure distribution and eventually leading to screenout.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3