Abstract
Abstract
Viscoelastic surfactants (VES) have been used to replace polymer-based fluids as effective, cleaner, and non-damaging viscofying carriers in frac-packing, acid fracturing, and matrix acidizing. However, several limitations challenge the use of VES-based fluids including: thermal instability, incompatibility with alcohol-based corrosion inhibitor, and intolerance to the presence of contaminating iron. This work introduces a new VES-based acid system for diversion in matrix acidizing that exhibits excellent thermal stability and diversion performance in both low-and high-temperature conditions.
Rheology measurements were conducted on spent VES-acid system as a function of temperature (77- 300°F) at a pH of 4-5. The effect of acidizing additives on the VES viscosity was investigated. The additives included a corrosion inhibitor, non-emulsifier, iron-chelating agent, and iron-reducing agent. Single and dual coreflood experiments were performed using limestone core samples with an initial permeability range of 4-200 md and a permeability contrast of 1.5-55. Post CT-scan imaging was conducted to investigate the wormhole topography. The diversion characteristic of the new VES in the dual coreflood experiments was evaluated by the structure and the extent of wormhole propagation in the low-permeability core.
Rheological data for 15 wt% HCl spent VES-solutions showed a maximum viscosity of 200-800 over a temperature range of 150-170°F, depending on the VES concentration in the sample. Without acidizing additives, a minimum of 50 cP was obtained at 195, 230, 250, and 275°F at 4, 5, 6, and 8 vol% of the VES in solution, respectively. None of the tested acidizing additives had a negative impact on the VES viscosity. At 8% VES loading, the acidizing package was optimized such that a minimum of 75 cP was obtained at 300°F.
Dual coreflood experiments were conducted at 150 and 250°F, and the results proved the ability of the proposed VES to divert efficiently in limestone formations. Single coreflood experiments also confirmed these results. Coreflood data indicated that a range of permeability contrast of 4-10 is the optimum for diversion ability in terms of the final permeability enhancement of the low-permeability cores. The results revealed 18.6, 45.6, 82%, and infinity when the permeability contrast was 28.3, 14.4, 6. 3, 1.63, respectively. A dual coreflood experiment was conducted for two cores with a permeability contrast of 1.6 at 150°F. The VES-acid system in the presence of all acidizing additives exhibited divergent performance that exceeded the performance of the VES in the absence of additivies. These results prove the stable performance of the VES and the enhancement in viscosity response after addition of both the iron-control agent and the non-emulsfier, which resulted in less acid leakoff and better wormhole structure.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献